Group Leader

Roger Williams

Structural studies of phosphoinositide signalling and intracellular sorting

Roger Williams
Group Members
  • Madhanagopal Anandapadamanaban
  • Maxime Bourguet
  • Antoine Dessus
  • Grace Gong
  • Iain Hay
  • Saiful Islam
  • Yohei Ohashi
  • Olga Perisic
  • Michael Yu

Eukaryotic cells have evolved mechanisms to respond to environmental stress that are tempered by signals from surrounding cells in multicellular organisms. Our research programme investigates the mechanisms whereby these cellular signals regulate mammalian cells. Phosphoinositide 3-kinases (PI3Ks) modify lipid membranes to produce second messengers and sorting signals that are important for cellular responses to environmental cues. PI3Ks are part of a superfamily of kinases that also includes the PI3K-related protein kinases (PIKKs). We study the structures, dynamics and functions of the PI3K superfamily and related pathways in cellular signalling, protein sorting, nutrition, organelle biogenesis and nerve regeneration. In addition to understanding PI3Ks and PIKKs in these processes, we are selecting and designing small molecules that exploit unique dynamics of these enzymes to activate them, for example, the PI3Kalpha activator 1938 that speeds nerve growth.

The activator drug 1938 opens a pocket that causes a switch to the activated conformation.

Our work on multiprotein complexes of PI3K-like enzymes includes class I PI3Ks activated by receptor tyrosine kinases and GPCRs, the primordial class III PI3K (VPS34) complexes present in all eukaryotes, mammalian target of rapamycin (mTOR) and ataxia telangiectasia mutated (ATM). We use electron cryomicroscopy/tomography (cryo-EM/cryo-ET) hydrogen-deuterium exchange mass spectrometry (HDX-MS), enzyme kinetic measurements, and computational simulations to marry structures with dynamics. With cryo-EM, we can visualise how these complexes assemble on and are regulated by cellular membranes.

A cryo-ET reconstruction of VPS34 complex II assembled on membranes with lipid-coupled RAB5.
A class III PI3K complex II (VPS34/VPS15/BECLIN1/UVRAG) bound to RAB5A-coupled lipid membranes.

Selected Publications

Making PI3K superfamily enzymes run faster.Gong GQ, Anandapadamanaban M, Islam MS, Hay IM, Bourguet M, Špokaitė S, Dessus AN, Ohashi Y, Perisic O, Williams RLAdv Biol Regul 95: 101060 (2025)
Structural insights into the activation of ataxia-telangiectasia mutated by oxidative stressHowes AC, Perisic O, Williams RLScience Advances 9(39): (2023)
A small-molecule PI3Kα activator for cardioprotection and neuroregeneration.Gong GQ, Bilanges B, Allsop B, Masson GR, Roberton V, Askwith T, Oxenford S, Madsen RR, Conduit SE, Bellini D, Fitzek M, Collier M, Najam O, He Z, Wahab B, McLaughlin SH, Chan AWE, Feierberg I, Madin A, Morelli D, Bhamra A, Vinciauskaite V, Anderson KE, Surinova S, Pinotsis N, Lopez-Guadamillas E, Wilcox M, Hooper A, Patel C, Whitehead MA, Bunney TD, Stephens LR, Hawkins PT, Katan M, Yellon DM, Davidson SM, Smith DM, Phillips JB, Angell R, Williams RL, Vanhaesebroeck BNature 618(7963): 159-168 (2023)
Structural basis for VPS34 kinase activation by Rab1 and Rab5 on membranes.Tremel S, Ohashi Y, Morado DR, Bertram J, Perisic O, Brandt LTL, von Wrisberg MK, Chen ZA, Maslen SL, Kovtun O, Skehel M, Rappsilber J, Lang K, Munro S, Briggs JAG, Williams RLNat Commun 12(1): 1564 (2021) Epub